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Section 10.3 Parametric Equations and Calculus

Now that we can graph parametric equations, we can consider extending the concepts of continuity and differentiation to these curves. How do we find equations of tangent lines? How do we take higher order derivatives? How do we find concavity? What will Arc Length look like with parametric equations?
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Ex. 1:  Find  for  
























Ex. 2:  Find  and  for   at .



















More Ex. 2:  






























Ex. 3:  Find  and  for   at .
















More Ex. 3:  





























Ex. 4:  Find the equation of the tangent line to the curve, C, defined by the equation  at the point M, , . 
















More Ex. 4:  














































More Ex. 4:  














































Ex. 5:  Find the equations of the tangent line at the point where the curve crosses itself.











































More Ex. 5:  














































More Ex. 5:  




















































If  and  when , then the parametric curve represented by  and  has a horizontal tangent at . 







If  and  when , then the parametric curve represented by  and  has a vertical tangent at . 





If  and  when , then  yields and indeterminate form. We need to study this situation on a case-by case-basis and we must consider the graph behavior near this point on the curve, since the indeterminate form cannot tell us what is happening. 

Ex. 6:  Find the points of horizontal tangency and vertical tangency.





























Ex. 7:  Determine the t-intervals on which the curve is concave downward, or concave upward.



































More Ex. 7:  
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Ex. 8:  Write an integral that represents the arc length of the curve over .



























Ex. 9:  Find the circumference of a circle with radius a.
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THEOREM 10.8 Arc Length in Parametric Form

If a smooth curve C is given by x = £{¢) and y = g(#) such that C does not
intersect itself on the interval a < t < b (except possibly at the endpoints), then
the arc length of C over the interval is given by
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Definition of a Smooth Curve

A curve C represented by x = f(r) and y = g(#) on an interval / is called smooth
if f"and g’ are continuous on / and not simultaneously 0, except possibly at the
endpoints of /. The curve C is called piecewise smooth if it is smooth on each
subinterval of some partition of /.
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THEOREM 10.7 Parametric Form of the Derivative

If a smooth curve C is given by the equations x = f(r) and y = g(#), then the
slope of C at (x, y) is

dy _dy/dt  dx
dx  dx/dr’  di 0.
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For higher order derivatives, use

SECOND DERIVATIVE

d|dy
d? d[dy dt{dx}
dx? _dx{dx}_ dx/dt
d|d?
d’y d|d% dt | dx?
dx® _dX|:dX2:|_ dx/dt

Notice that the denominator for each higher-order
derivative is always dx/dt.

:| THIRD DERIVATIVE
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